

IPPT PAN DOCTORAL STUDY TEACHING PROGRAMME WARSAW

The physical basis of experimental methods used in mechanics Prof. Wiera Oliferuk, Ph. D., Dr. Habil., Eng. (retired professor) Department of Mechanics of Materials

Objectives of the lectures:

- to show that the foundation of determining any physical quantity that characterizes an object is a certain phenomenon described by the laws of physics,
- to encourage those who are engaged in modelling of processes to confront their introduced assumptions with the results of experiments,
- to analyze examples of non-destructive experimental test methods taking into account the importance of these methods in modern mechanic.

Course content

1. Introduction:

- the structure of modern scientific research,
- the concept of experimental method in natural sciences and technology,
- experimental methods in the pre-scientific world,
- Galileo Galilei as a precursor of modern experimental methods in mechanics,
- metrology and its beginnings, International System of Units.
- 2. Material properties determining its response to mechanical loading:
 - the definitions of stress and strain and a choice of measure for these quantities,
 - investigation of a material subjected to uniaxial loading,
 - a) yield point and methods of its determination,
 - b) the dependence of yield point on strain rate,
 - c) Young's modulus and methods of its determination.
- 3. Energy balance in a material deformation process:
 - physical quantities describing a thermodynamic state of a deformed material: internal energy, entropy, and free energy,
 - energy storage process during plastic deformation,
 - stored energy and experimental methods of its determination,
 - the concept of energy storage rate as a measure of the plastic work partition into the stored energy and heat at each instant of the deformation process.
- 4. Instability of plastic deformation:
 - Considère's criterion and its limitations,
 - loss of energy storage rate in the area of plastic deformation localization as an indicator of plastic deformation instability,
 - finding the point of plastic deformation instability based on the determination of the energy storage rate during a material deformation process.
- 5. Non-destructive experimental test methods:
 - physical phenomena used in non-destructive test methods: basics of ultrasonic methods, eddy currents and non-contact measurement of temperature fields,
 - the importance of non-destructive test methods in modern mechanics.

The total number of lecture hours: 30, laboratory exercises: 0 hours, self-teaching: 40, direct tutoring and consultations: 10 hours,

ECTS Points: 3